Highly sensitive detection of daminozide using terahertz metamaterial sensors
Keywords:
Terahertz time-domain spectroscopy, plant growth regulator, detection, metamaterialAbstract
In order to solve the problems of low sensitivity and complex sample pretreatment in traditional detection, a method was proposed in this study to detect daminozide using terahertz combined with a metamaterial sensor, which enables real-time and label-free molecular detection with high sensitivity. The correlation between the transmission frequency shift and absorbance of daminozide solution at different concentrations was analyzed. The simulation and experimental results showed that this metamaterial sensor could achieve highly sensitive sensing of daminozide solutions at 0.05 mg/L. The maximum quality factor (Qmax) of the two peaks could reach 5.78 and 13.05, and the maximum figure of merit (FOM) of the two peaks can reach 0.82 and 1.72. The maximum sensitivity of two resonance peaks reached 38.148 GHz/(mg∙L) and 133.516 GHz/(mg∙L) when the concentration of daminozide in the solution was 2000 mg/L. There was an obvious positive correlation between the transmission and transmission, frequency shift and frequency shift, and absorbance and absorbance of the resonance peak of daminozide solutions. Therefore, this platform not only opens up new possibilities for the microanalysis of the chemical composition of substances in solutions but also provides a valuable reference for the design of other metamaterial-based sensors in the field of food safety. Keywords: Terahertz time-domain spectroscopy, plant growth regulator, detection, metamaterial DOI: 10.25165/j.ijabe.20221506.7600 Citation: Mao H P, Du X X, Yan Y T, Zhang X D, Ma G X, Wang Y F, et al. Highly sensitive detection of daminozide using terahertz metamaterial sensors. Int J Agric & Biol Eng, 2022; 15(6): 180–188.References
[1] Wang M G, Nie H L, Han D D, Qiao X Q, Yan H Y, Shen S G. Cauliflower-like resin microspheres with tuneable surface roughness assolid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumber. Food Chemistry, 2019; 295: 259-266.
[2] Yan H Y, Wang F, Han D D, Yang G L. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst, 2012; 137: 2884-2890.
[3] Han Y H, Wang Z Q, Jia J, Bai L G, Liu H Y, Shen S G, et al. Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin ashydrophilic solid-phase extraction sorbent for specific simultaneous determi-nation of three plant growth regulators in green bell peppers. Food Chemistry, 2020; 31: 125999. doi:10.1016/j.foodchem.2019.125999.
[4] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. Journal of Physics D: Applied Physics, 2020; 53(19): 195401. doi:10.1088/1361-6463/ab6f90.
[5] Sun X D, Liu J B. Measurement of plumpness for intact sunflower seed using Terahertz transmittance imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2020; 41(3): 307-321.
[6] Chen M, Singh L, Xu N N, Singh R N, Zhang W L, Xie L J. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017; 25(13): 14089-14097.
[7] Pang Y, Wang J, Cheng Q, Xia S, Zhou X Y, Xu Z, et al. Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017; 110(10): 104103. doi:10.1063/1.4978205.
[8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001; 292(5514): 77-79.
[9] Liu Z W, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007; 315(5819): 1686-1686. doi: 10.1126/science.1137368.
[10] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range. Science, 2007; 315(5819): 1699-1701.
[11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006; 314(5801): 977-980.
[12] Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
[13] Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, et al. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020; 228: 117736. doi: 10.1016/j.saa.2019.117736.
[14] Zhou R Y, Wang C, Huang Y X, Huang K, Wang Y L, Xu W D, et al. Lable-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosensors and Bioelectronics, 2021; 188: 113336. doi: 10.1016/j.bios.2021.113336.
[15] Li B, Bai J P, Zhang S J. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021; 247: 119101. doi: 10.1016/j.saa.2020.119101.
[16] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics, 2019; 126: 485-492.
[17] Xu W D, Huang Y X, Zhou R Y, Wang Q, Yin J F, Kono J, et al. Metamaterial-free flexible graphene-enabled Terahertz sensors for pesticide detection at bio-interface. ACS Applied Materials & Interfaces, 2020; 12: 44281-44287.
[18] Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chemistry, 2017; 218: 330-334.
[19] Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via a terahertz metasensor. Optics Express, 2021; 29(10): 15255-15268.
[20] Shen Y, Zhang J Q, Pang Y Q, Wang J F, Ma H, Qu S B. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics Express, 2018; 26(12): 15665. doi: 10.1364/OE.26.015665.
[21] Yoo Y J, Ju S, Park S Y, Kim Y J, Bong J, Lim T, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports, 2015; 5(1): 14018-14025. doi:10.1038/srep14018.
[22] Xie J W, Zhu W R, Rukhlenko I D, Xiao F J, He C, Geng J P, et al. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018; 26(4): 5052-5059.
[23] Zhang J Q, Wu X Y, Liu L Y, Huang C, Chen X Y, Tian Z, et al. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express, 2019; 27(18): 25595-25602.
[24] Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Optics Express. 2020; 28(4): 5306-5316.
[25] Wang Q, Yin S, Shi X D, Fan J C, Huang K, Gao W L, et al. High‑sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi‑frequency resonance metamaterials. Journal of Food Measurement and Characterization, 2022; 16: 2041-2048.
[26] Du X X, Zhang X D, Wang Y F, Ma G X, Liu Y, Wang B, et al. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials. Optics Express; 2021; 29: 36535. doi:10.1364/OE.437909.
[27] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society American A, 2001; 18: 1562-1571. doi: 10.1364/JOSAA.18.001562.
[28] Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 1996; 2: 739-746.
[29] Chen T, Zhang Q, Li Z, Yin X H, Hu F R. Experimental and theoretical investigations of tartaric acid isomers by terahertz spectroscopy and density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 205: 312-319.
[30] Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via terahertz metasensor. Optics Express, 2021; 29 (10): 15255-15268. doi: 10.1364/OE.424367.
[31] Yan X. Zhang X, Liang L, Yao J. Research progress on the application of terahertz-band metamaterials in biosensors. Spectroscopy and Spectral Analysis, 2014; 34: 2365-2371.
[32] Zhao T G, Yu S L. Ultra-high sensitivity nanosensor based on multiple fano resonance in the MIM coupled plasmonic resonator. Plasmonics, 2017; 13(4): 1115-1120.
[33] Saadeldin A, Hameed M, Elkaramany E, Obayya S. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sensors Journal, 2019; 19: 7993-7999.
[34] Du X X, Wang Y F, Zhang X D, Ma G X, Liu Y, Wang B, et al. A study of plant growth regulators detection based on terahertz time-domain spectroscopy and density functional theory. RSC advance, 2021; 11: 28898-28907.
[35] Guo X Y, Zhang Z, Yang M S, Bing P B, Yan X, Yang Q L, et al. Time-frequency double domain resolving by electromagnetically induced transparency metasensors for rapid and label-free detection of cancer biomarker midkine. Optics and Lasers in Engineering, 2021; 142: 106566. doi: 10.1016/j.optlaseng.2021.106566.
[36] R-project. Available: http://www.r-project.org. Accessed on [2021-12-01].
[37] O’Hara J F, Singh R J, Brener I, Smirnova E, Han J Q, Taylor A J, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008; 16: 1786-1795.
[38] Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, et al. Gold nanoparticle-based Terahertz metamaterial sensors: Mechanisms and Applications. ACS Photonics, 2016; 3: 2308-2314.
[39] Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al. Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
[40] Srivastava Y K, Cong L Q, Singh R J. Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017; 111: 201101. doi: 10.1063/1.5000428.
[41] Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, et al. Using antibody modified Terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE Journal of Selected Topics in Quantum Electronics, 2021; 27: 6900207. doi:10.1109/JSTQE.2020.3038308.
[42] Gupta M, Singh R. Terahertz sensing with optimized Q/V metasurface cavities. Advanced Optical Materials, 2020; 8: 1902025. doi: 10.1002/adom.201902025.
[43] Wang Z Y, Geng Z X, Fang W H. Exploring performance of THz metamaterial biosensor based on flexible thin-film. Optics Express, 2020; 28(18): 26370-26384. doi: 10.1364/OE.402222.
[2] Yan H Y, Wang F, Han D D, Yang G L. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst, 2012; 137: 2884-2890.
[3] Han Y H, Wang Z Q, Jia J, Bai L G, Liu H Y, Shen S G, et al. Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin ashydrophilic solid-phase extraction sorbent for specific simultaneous determi-nation of three plant growth regulators in green bell peppers. Food Chemistry, 2020; 31: 125999. doi:10.1016/j.foodchem.2019.125999.
[4] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. Journal of Physics D: Applied Physics, 2020; 53(19): 195401. doi:10.1088/1361-6463/ab6f90.
[5] Sun X D, Liu J B. Measurement of plumpness for intact sunflower seed using Terahertz transmittance imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2020; 41(3): 307-321.
[6] Chen M, Singh L, Xu N N, Singh R N, Zhang W L, Xie L J. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017; 25(13): 14089-14097.
[7] Pang Y, Wang J, Cheng Q, Xia S, Zhou X Y, Xu Z, et al. Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017; 110(10): 104103. doi:10.1063/1.4978205.
[8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001; 292(5514): 77-79.
[9] Liu Z W, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007; 315(5819): 1686-1686. doi: 10.1126/science.1137368.
[10] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range. Science, 2007; 315(5819): 1699-1701.
[11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006; 314(5801): 977-980.
[12] Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
[13] Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, et al. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020; 228: 117736. doi: 10.1016/j.saa.2019.117736.
[14] Zhou R Y, Wang C, Huang Y X, Huang K, Wang Y L, Xu W D, et al. Lable-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosensors and Bioelectronics, 2021; 188: 113336. doi: 10.1016/j.bios.2021.113336.
[15] Li B, Bai J P, Zhang S J. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021; 247: 119101. doi: 10.1016/j.saa.2020.119101.
[16] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics, 2019; 126: 485-492.
[17] Xu W D, Huang Y X, Zhou R Y, Wang Q, Yin J F, Kono J, et al. Metamaterial-free flexible graphene-enabled Terahertz sensors for pesticide detection at bio-interface. ACS Applied Materials & Interfaces, 2020; 12: 44281-44287.
[18] Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chemistry, 2017; 218: 330-334.
[19] Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via a terahertz metasensor. Optics Express, 2021; 29(10): 15255-15268.
[20] Shen Y, Zhang J Q, Pang Y Q, Wang J F, Ma H, Qu S B. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics Express, 2018; 26(12): 15665. doi: 10.1364/OE.26.015665.
[21] Yoo Y J, Ju S, Park S Y, Kim Y J, Bong J, Lim T, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports, 2015; 5(1): 14018-14025. doi:10.1038/srep14018.
[22] Xie J W, Zhu W R, Rukhlenko I D, Xiao F J, He C, Geng J P, et al. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018; 26(4): 5052-5059.
[23] Zhang J Q, Wu X Y, Liu L Y, Huang C, Chen X Y, Tian Z, et al. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express, 2019; 27(18): 25595-25602.
[24] Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Optics Express. 2020; 28(4): 5306-5316.
[25] Wang Q, Yin S, Shi X D, Fan J C, Huang K, Gao W L, et al. High‑sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi‑frequency resonance metamaterials. Journal of Food Measurement and Characterization, 2022; 16: 2041-2048.
[26] Du X X, Zhang X D, Wang Y F, Ma G X, Liu Y, Wang B, et al. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials. Optics Express; 2021; 29: 36535. doi:10.1364/OE.437909.
[27] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society American A, 2001; 18: 1562-1571. doi: 10.1364/JOSAA.18.001562.
[28] Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 1996; 2: 739-746.
[29] Chen T, Zhang Q, Li Z, Yin X H, Hu F R. Experimental and theoretical investigations of tartaric acid isomers by terahertz spectroscopy and density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 205: 312-319.
[30] Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via terahertz metasensor. Optics Express, 2021; 29 (10): 15255-15268. doi: 10.1364/OE.424367.
[31] Yan X. Zhang X, Liang L, Yao J. Research progress on the application of terahertz-band metamaterials in biosensors. Spectroscopy and Spectral Analysis, 2014; 34: 2365-2371.
[32] Zhao T G, Yu S L. Ultra-high sensitivity nanosensor based on multiple fano resonance in the MIM coupled plasmonic resonator. Plasmonics, 2017; 13(4): 1115-1120.
[33] Saadeldin A, Hameed M, Elkaramany E, Obayya S. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sensors Journal, 2019; 19: 7993-7999.
[34] Du X X, Wang Y F, Zhang X D, Ma G X, Liu Y, Wang B, et al. A study of plant growth regulators detection based on terahertz time-domain spectroscopy and density functional theory. RSC advance, 2021; 11: 28898-28907.
[35] Guo X Y, Zhang Z, Yang M S, Bing P B, Yan X, Yang Q L, et al. Time-frequency double domain resolving by electromagnetically induced transparency metasensors for rapid and label-free detection of cancer biomarker midkine. Optics and Lasers in Engineering, 2021; 142: 106566. doi: 10.1016/j.optlaseng.2021.106566.
[36] R-project. Available: http://www.r-project.org. Accessed on [2021-12-01].
[37] O’Hara J F, Singh R J, Brener I, Smirnova E, Han J Q, Taylor A J, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008; 16: 1786-1795.
[38] Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, et al. Gold nanoparticle-based Terahertz metamaterial sensors: Mechanisms and Applications. ACS Photonics, 2016; 3: 2308-2314.
[39] Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al. Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
[40] Srivastava Y K, Cong L Q, Singh R J. Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017; 111: 201101. doi: 10.1063/1.5000428.
[41] Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, et al. Using antibody modified Terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE Journal of Selected Topics in Quantum Electronics, 2021; 27: 6900207. doi:10.1109/JSTQE.2020.3038308.
[42] Gupta M, Singh R. Terahertz sensing with optimized Q/V metasurface cavities. Advanced Optical Materials, 2020; 8: 1902025. doi: 10.1002/adom.201902025.
[43] Wang Z Y, Geng Z X, Fang W H. Exploring performance of THz metamaterial biosensor based on flexible thin-film. Optics Express, 2020; 28(18): 26370-26384. doi: 10.1364/OE.402222.
Downloads
Published
2022-12-27
How to Cite
Mao, H., Du, X., Yan, Y., Zhang, X., Ma, G., Wang, Y., … Shi, Q. (2022). Highly sensitive detection of daminozide using terahertz metamaterial sensors. International Journal of Agricultural and Biological Engineering, 15(6), 180–188. Retrieved from https://ijabe.migration.pkpps03.publicknowledgeproject.org/index.php/ijabe/article/view/7600
Issue
Section
Information Technology, Sensors and Control Systems
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).