Impact of downwind sampling location and height on inverse-Gaussian dispersion modeling: A theoretical study
Keywords:
animal feeding operations, Gaussian dispersion modeling, downwind distance, downwind sampling location, downwind sampling heightAbstract
In the studies of fate and transport of air emissions from animal feeding operations, Gaussian based dispersion models have been commonly used to predict downwind pollutant concentrations through forward modeling approach, or to derive emission rates and emission factors through inverse dispersion modeling approach. In the Gaussian dispersion modeling process, downwind sampling location and sampling height could generate significant impact on accuracy of the model validation, or inverse modeling results based upon field measurements. This study theoretically analyzed the impact of downwind locations and sampling height on Gaussian dispersion modeling. It was discovered that the field sampling needs to be conducted at the locations beyond the plume touching-ground distance, at a downwind distance as short as 5 m for the case scenario with zero rise of emission plume under the atmospheric stability class C, or as long as 297 m for the case scenario with 15 m rise of emission plume under the atmospheric stability class F. In order to measure the PM concentrations of the dispersion plume, the minimum sampling height at the locations within the plume touching-ground distance varied from ground level to as high as almost 14 m, whereas for the locations beyond the plume touching-ground distance, a sampling height of ground level would be acceptable.References
[1] EPA. Ohio
Downloads
Published
2012-12-11
How to Cite
Jones, H. W., Wang-Li, L., & Boroujeni, B. Y. (2012). Impact of downwind sampling location and height on inverse-Gaussian dispersion modeling: A theoretical study. International Journal of Agricultural and Biological Engineering, 5(4), 39–46. Retrieved from https://ijabe.migration.pkpps03.publicknowledgeproject.org/index.php/ijabe/article/view/582
Issue
Section
Structures and Bio-environmental Engineering
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).