Reduction of environmental pollution by using RTK-navigation in
Keywords:
precision farming, RTK technology, ecological footprint, environmental pollution, tillageAbstract
The concept of precision farming is wide, and it represents the efficiency which is achieved with the help of precision. For the navigation of field machines, the RTK (Real Time Kinematic) navigation is needed. In order to verify the positive effects in practice, RTK navigation system equipped with Fentd 828 was applied to test the width of overlap, and fuel and time that could be saved compared with manual driving. The experiment was conducted on two areas of land size of 172 m × 58 m with two working machines width 3 m and 6 m. Results indicated that 15.7% of the time and 8.66% of the fuel were saved on a working machine of 3 meters width, and 12.6% of the time and 8.28% of the fuel were saved on a working machine of 6 m width. The width of the overlap represent 10% of the working width of the machine, and with the method of turning, which RTK navigation allows, additional time was saved. Ecological footprint, CO2 emissions and global warming potential (GWP) was estimated under different guiding systems. The largest footprint was related to manual tillage with 3 m width working machine, while estimation on CO2 (kg) emissions and GWP obtained the same result. The use of precision agriculture technologies allows better planning and analyzing of working procedures. The air, water and soil pollution are less intensive. Keywords: precision farming, RTK technology, ecological footprint, environmental pollution, tillage DOI: 10.25165/j.ijabe.20191205.4932 Citation: Kelc D, Stajnko D, Berk P, Rakun J, Vindiš P, Lakota M. Reduction of environmental pollution by using RTK-navigation in soil cultivation. Int J Agric & Biol Eng, 2019; 12(5): 173–178.References
[1] Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
[2] Bechara A, Vigneaultb C. Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 2017; 153: 110–128.
[3] RTK Farming. Available online: http://www.rtkfarming.co.uk/. Accessed on [2018-06-07]
[4] Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems. Computers and Electronics in Agriculture, 2008; 61(1): 63–78.
[5] Monaco T J, Grayson A S, Sanders D C. Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science, 1981; 29(4): 394–397.
[6] Jin X, Li Q W, Zhao K X, Zhao B, He Z T, Qiu Z M. Development and test of an electric precision seeder for small-size vegetable seeds. Int J Agric & Biol Eng, 2019; 12(2): 75–81.
[7] Kviz Z, Kroulik M, Chyba J. Soil damage reduction and more environmental friendly agriculture by using advanced machinery traffic. Agronomy Research, 2014; 12(1): 121–128.
[8] Lopotz H. Precision farming. rehnen sich die investitionen? Available online: https://www.landwirtschaftskammer.de/duesse/rueckblick/pdf/ 2013-06-19-rentabilitaet-pf.pdf. Accessed on [2018-03-20]
[9] Landerl G. Untersuchungen zum Nutzen und zu Genauigkeiten von GPS-gestützten Parallelfahrsystemen (Lenkhilfe, Lenkas-sistent und Lenkautomat) bei Traktoren. Wien, Universität für Bodenkultur. Available online: file:///C:/Users/damijan/Downloads/fulltext_7467.pdf, 2009. Accessed on [2018-05-21]
[10] Holpp M, Anken T, Sauter M, Kroulik M, Hensel O. Nutzen automatischer Lenksysteme, Forschungsanstalt Agroscope Reckenholz-Tänikon. Available online: https://www.bioaktuell.ch/fileadmin/documents/ba/ Pflanzenbau/Praezisionslandwirtschaft/ART-Bericht-756-d-2012_Holpp-et-al_Nutzen-Lenksysteme.pdf. Accessed on [2018-05-24]
[11] Reckleben Y. Vorzüge und Schwachstellen von Lenksystemen in der Landwirtschaft. Available online: https://www.landwirtschaft.sachsen.de/ landwirtschaft/download/Vorzuege_und_Schwachstellen_von_Lenksystemen_in_der_LW.pdf. Accessed on [2018-06-04]
[12] Zhang X, Liu D, Fan C, Du J, Meng F, Fang J. A novel and smart automatic light-seeking flowerpot for monitoring flower growth environment. Int J Agric & Biol Eng, 2018; 11(2): 184–189.
[13] Gao Z R, Ni J, Zhu Y, Jiang Q, Cao W X. Water-efficient sensing method for soil profiling in the paddy field. Int J Agric & Biol Eng, 2018; 11(4): 207–216.
[14] Li J B, Zhu R G, Chen B Q. Image detection and verification of visual navigation route during cotton field management period. Int J Agric & Biol Eng, 2018; 11(6): 159–165.
[15] Stajnko D, Narodoslawsky M, Lakota M. Ecological Footprints and CO2 Emissions of Tomato Production in Slovenia. Pol. J. Environ. Stud., 2016; 25(3): 1243.
[16] Review of the activities of the environment and spatial planning ministry. Available online: http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/ publikacije/en/pregled_dela_06_en.pdf, 2016. Accessed on [2018-08-13]
[17] GPS Visualizer: Do it yourself mapping. Available online: http://www.gpsvisualizer.com/, 2002. Accessed on [2018-07-28]
[18] Chivenge P P, Murwirra H K, Gillerc K E, Mapfumod P, Sixb J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 2007; 94(2): 337.
[19] Kettl K H. SPI on Web. Available online: http://spionweb.tugraz.at/ SPIonWeb_Stepbystep_eng.pdf/, 2013. Accessed on [2018-06-13]
[20] Brückner M. Ein Erfahrungsbericht der Seydaland. Available online: https://www.landwirtschaft.sachsen.de/landwirtschaft/download/Vortrag_Betrieb_Seydaland_Agrar_GmbH_2010.pdf, 2010. Accessed on [2018-07-21]
[21] Bravo G, Lopez D, Vasquez M, Iriarte A. Carbon Footprint Assessment of Sweet Cherry Production: Hotspots and Improvement Options. Pol. J. Environ. Stud., 2017; 26(2): 559–566.
[22] Gan Y, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduce the carbon footprint of spring wheat production. Nat. Commun, 2017; 5: 5012.
[23] Zhang D, Shen J, Zhang F, Li Y, Zhang W. Carbon footprint of grain production in China. Scientific Reports, 2017; 7: 4126.
Chang L, Herb C, Qiang C, Yantai G. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016; 36: 69.
[2] Bechara A, Vigneaultb C. Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 2017; 153: 110–128.
[3] RTK Farming. Available online: http://www.rtkfarming.co.uk/. Accessed on [2018-06-07]
[4] Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems. Computers and Electronics in Agriculture, 2008; 61(1): 63–78.
[5] Monaco T J, Grayson A S, Sanders D C. Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science, 1981; 29(4): 394–397.
[6] Jin X, Li Q W, Zhao K X, Zhao B, He Z T, Qiu Z M. Development and test of an electric precision seeder for small-size vegetable seeds. Int J Agric & Biol Eng, 2019; 12(2): 75–81.
[7] Kviz Z, Kroulik M, Chyba J. Soil damage reduction and more environmental friendly agriculture by using advanced machinery traffic. Agronomy Research, 2014; 12(1): 121–128.
[8] Lopotz H. Precision farming. rehnen sich die investitionen? Available online: https://www.landwirtschaftskammer.de/duesse/rueckblick/pdf/ 2013-06-19-rentabilitaet-pf.pdf. Accessed on [2018-03-20]
[9] Landerl G. Untersuchungen zum Nutzen und zu Genauigkeiten von GPS-gestützten Parallelfahrsystemen (Lenkhilfe, Lenkas-sistent und Lenkautomat) bei Traktoren. Wien, Universität für Bodenkultur. Available online: file:///C:/Users/damijan/Downloads/fulltext_7467.pdf, 2009. Accessed on [2018-05-21]
[10] Holpp M, Anken T, Sauter M, Kroulik M, Hensel O. Nutzen automatischer Lenksysteme, Forschungsanstalt Agroscope Reckenholz-Tänikon. Available online: https://www.bioaktuell.ch/fileadmin/documents/ba/ Pflanzenbau/Praezisionslandwirtschaft/ART-Bericht-756-d-2012_Holpp-et-al_Nutzen-Lenksysteme.pdf. Accessed on [2018-05-24]
[11] Reckleben Y. Vorzüge und Schwachstellen von Lenksystemen in der Landwirtschaft. Available online: https://www.landwirtschaft.sachsen.de/ landwirtschaft/download/Vorzuege_und_Schwachstellen_von_Lenksystemen_in_der_LW.pdf. Accessed on [2018-06-04]
[12] Zhang X, Liu D, Fan C, Du J, Meng F, Fang J. A novel and smart automatic light-seeking flowerpot for monitoring flower growth environment. Int J Agric & Biol Eng, 2018; 11(2): 184–189.
[13] Gao Z R, Ni J, Zhu Y, Jiang Q, Cao W X. Water-efficient sensing method for soil profiling in the paddy field. Int J Agric & Biol Eng, 2018; 11(4): 207–216.
[14] Li J B, Zhu R G, Chen B Q. Image detection and verification of visual navigation route during cotton field management period. Int J Agric & Biol Eng, 2018; 11(6): 159–165.
[15] Stajnko D, Narodoslawsky M, Lakota M. Ecological Footprints and CO2 Emissions of Tomato Production in Slovenia. Pol. J. Environ. Stud., 2016; 25(3): 1243.
[16] Review of the activities of the environment and spatial planning ministry. Available online: http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/ publikacije/en/pregled_dela_06_en.pdf, 2016. Accessed on [2018-08-13]
[17] GPS Visualizer: Do it yourself mapping. Available online: http://www.gpsvisualizer.com/, 2002. Accessed on [2018-07-28]
[18] Chivenge P P, Murwirra H K, Gillerc K E, Mapfumod P, Sixb J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 2007; 94(2): 337.
[19] Kettl K H. SPI on Web. Available online: http://spionweb.tugraz.at/ SPIonWeb_Stepbystep_eng.pdf/, 2013. Accessed on [2018-06-13]
[20] Brückner M. Ein Erfahrungsbericht der Seydaland. Available online: https://www.landwirtschaft.sachsen.de/landwirtschaft/download/Vortrag_Betrieb_Seydaland_Agrar_GmbH_2010.pdf, 2010. Accessed on [2018-07-21]
[21] Bravo G, Lopez D, Vasquez M, Iriarte A. Carbon Footprint Assessment of Sweet Cherry Production: Hotspots and Improvement Options. Pol. J. Environ. Stud., 2017; 26(2): 559–566.
[22] Gan Y, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduce the carbon footprint of spring wheat production. Nat. Commun, 2017; 5: 5012.
[23] Zhang D, Shen J, Zhang F, Li Y, Zhang W. Carbon footprint of grain production in China. Scientific Reports, 2017; 7: 4126.
Chang L, Herb C, Qiang C, Yantai G. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016; 36: 69.
Downloads
Published
2019-10-14
How to Cite
Kelc, D., Stajnko, D., Berk, P., Rakun, J., Vindiš, P., & Lakota, M. (2019). Reduction of environmental pollution by using RTK-navigation in. International Journal of Agricultural and Biological Engineering, 12(5), 173–178. Retrieved from https://ijabe.migration.pkpps03.publicknowledgeproject.org/index.php/ijabe/article/view/4932
Issue
Section
Biosystems, Biological and Ecological Engineering
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).