Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy
Keywords:
electrical impedance spectroscopy, nitrogen stress, tomato (Solanum lycopersicum) leaves, nitrogen nutrition, diagnosis, monitoring, nondestructive detectionAbstract
Abstract: Nitrogen (N) is a life element for crop growth. In tomato growth and development, N stress often occurs and degrades crop yield and quality. Superfluous N can noticeably increase the nitrate content, which can be degraded into strong carcinogenic substance- nitrite. An accurate and timely monitoring and diagnosis of nutrition during crop growth is premise to realize a precise nutrient management. Crop N monitoring methods have been developed to improve N fertilizer management, and most of them are based on leaf or canopy optical property measurements. Although many optical/spectral plant N sensors have already commercialized for production use, low accuracy for phosphorus (P) and potassium (K) detection and diagnosis remains an important drawback of these methods. To explore the potential of N diagnosis by electrical impedance and perform study for nutrition status of plant NPK meanwhile by the electrical impedance, it is necessary that evaluate the N nutrition level by leaf impedance spectroscopy. Electrical impedance was applied to determine the physiological and nutritional status of plant tissues, but few studies related to plant N contents have been reported. The objective of this study was to evaluate the N nutrition level by leaf impedance spectroscopy and realize the early diagnosis and monitoring of N nutrition stress in tomato. Five sets of tomato plant samples with different N contents were cultivated in a Venlo greenhouse. N content of leaves was determined, and electrical impedance data were recorded in a frequency range of 1 Hz to 1 MHz. The obtained impedance data were analyzed using an equivalent circuit model for cellular tissues. The variation of equivalent parameters along with N content was analyzed, and the sensitive impedance spectroscopy characteristics of N nutrition level were extracted. Furthermore, the effect of moisture content on impedance measurement was discussed and the prediction model for N content was developed. Results showed that electrical impedance can be conveniently applied to early diagnosis and monitoring for tomato N nutrition stress. Keywords: electrical impedance spectroscopy, nitrogen stress, tomato (Solanum lycopersicum) leaves, nitrogen nutrition, diagnosis, monitoring, nondestructive detection DOI: 10.3965/j.ijabe.20171003.3188 Citation: Li M Q, Li J Y, Wei X H, Zhu W J. Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy. Int J Agric & Biol Eng, 2017; 10(3): 194–205.References
[1] He Y, Peng J Y, Liu F, Zhang C, Kong W W. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology. Transactions of the CSAE, 2015; 31(3): 174–189. (in Chinese)
[2] Azzarello E, Masi E, Mancuso S. Electrochemical impedance spectroscopy: in plant electrophysiology. Germany: Heidelberg. 2012; pp. 205–223.
[3] Khaled D El, Castellano N N, Gazquez J A, García Salvador R M, Manzano-Agugliaro F. Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 2015; 140: 1749–1762.
[4] Tomkiewicz D, Piskier T. A plant based sensing method for nutrition stress monitoring. Precis. Agric, 2012; 13(3): 370–383.
[5] Liu Y, Wang T, Wu H Y. Diagnosis on potassium nutrition of maize using impedance parameter of leaf Tissue Juice. Transactions of the CSAM, 2013; 44(1): 185–189. (in Chinese)
[6] Muñoz-Huerta R F, Ortiz-Melendez A D J, Guevara- Gonzalez R G, Torres-Pacheco I, Herrera-Ruiz G, Contreras-Medina L M, et al. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa). Sensors, 2014; 14: 11492–11503.
[7] Borges E, Matos A P, Cardoso J M. Early detection and monitoring of plant disease by bioelectric impedance spectroscopy. 2nd IEEE Portuguese Meeting, Bioengineering, 2012.
[8] Chowdhury A, Bera T K, Ghoshal D, Chakraborty B. Electrical impedance variations in banana ripening: an analytical study with electrical impedance spectroscopy. Journal of Food Process Engineering, 2017; 40(2): 1–14.
[9] Rehman M, Basem A J A, Izneid A, Abdullah M Z, Arshad M R. Assessment of quality of fruits using impedance spectroscopy. International Journal of Food Science and Technology, 2011; 46(6): 1303–1309.
[10] Freeborn T J, Maundy B, Elwakil A S. Cole impedance extractions from the step response of a current excited fruit sample. Computer and Electronics in Agriculture, 2013; 98: 100–108.
[11] Zhao P F, Zhang H L, Zhao D J, Wang Z J, Fan L F. Rapid on-line non-destructive detection of the moisture content of corn ear by bioelectrical impedance spectroscopy. Int J Agric & Biol Eng, 2015; 8(6): 37–45.
[12] Hamed K B, Zorrig W, Ahmed H H. Electrical impedance spectroscopy: A tool to investigate the responses of one halophyte to different growth and stress conditions. Computers and Electronics in Agriculture, 2016; 123: 376–383.
[13] Harry O L, Thierry B. Analysis of root growth by impedance spectroscopy (EIS). Plant and Soil, 2005; 277: 299–313.
[14] Ellis T, Murray W, Kavalieris L. Electrical capacitance of bean (Vicia faba) root systems was related to tissue density- a test for the Dalton Model. Plant Soil, 2013; 366: 575–584.
[15] Lu Y Z, Hu Y G, Zhang X L, Li P P. Responses of electrical properties of tea leaves to low-temperature stress. Int J Agric & Biol Eng, 2015; 8(5): 170–175.
[16] Zhang B H, Wang R H, Wang Y X, Li Y B. LabVIEW-based impedance biosensing system for detection of avian influenza virus. Int J Agric & Biol Eng, 2016; 9(4): 116–122.
[17] Swisher S L, Lin M C, Liao A, Leeflang E J, Khan Y. Impedance sensing device enables early detection of pressure ulcers in vivo. Nature Communications, 2015; 6: 65–75.
[18] Greenham C G, Randall P J, Müller W J. Studies of phosphorus and potassium deficiencies in Trifolium subterraneum based on electrical measurements. Can. J. Bot., 2011; 60(5): 634–644.
[19] Xiao J Z, Ren F L, Re S L T. Absorption rule of tomato on NPK and effect of fertilizer application. Xinjiang Agricultural Sciences, 1990; 3: 114–116. (in Chinese)
[20] Yu W G, Zhao T M. Tomato cultivation new technology. Fujian Science and Technology Press, 2005. (in Chinese)
[21] Bao S D. Soil agro-chemistrical analysis. China Agriculture Press, 2007. (in Chinese)
[22] Zoltowski P. On the electrical capacitance of interfaces exhibiting constantphase element behavior. Journal of Electroanalytical Chemistry, 1998; 443(1): 149–154.
[23] Larfaillou S, Guy-Bouyssou D, Cras F L, Franger S. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy. Journal of Power Sources, 2016; 319: 139–146.
[24] Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2 Capacitance. Electrochimica Acta, 2016; 188: 566–573.
[25] Córdoba-Torres P. Relationship between constant-phase element (CPE) parameters and physical properties of films with a distributed resistivity. Electrochimica Acta, 2017; 225: 592–604.
[26] Yasumasa A, Koichi M, Naoto W. Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 2014; 121(1): 24–31.
[27] Li J Y, Li M Q, Mao H P, Zhu W J. Diagnosis of potassium nutrition level in Solanum lycopersicum based on electrical impedance. Biosystems Engineering, 2016; 147: 130–138.
[28] Mizukami Y, Sawai Y, Yamaguchi Y. Moisture content measurement of tea leaves by electrical impedance and capacitance. Biosystems Engineering, 2006; 93(3): 293–299.
[29] Li J Y, Mao H P. Monitoring of tomato leaf moisture content based on electrical impedance and capacitance. Transactions of the CSAM, 2016; 47(5): 293–298. (in Chinese)
[30] Takashima T, Hikosaka K, Hirose T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 2004; 27(8): 1047–1054.
[31] Shi Z M, Tang J C, Cheng R M, Luo D, Liu S R. A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 2015; 35(18): 5909–5919. (in Chinese)
[32] Masot R, Alcañiz M, Fuentes A, Schmidt F C, Barat J M, Gil L, et al. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A, 2010; 158(2): 217–223.
[33] Bezanilla F. White M M. Membrane transport processes in organized systems. Chapter I: Properties of ionic channels in excitable membranes. Plenum Medical Book Company, New York, US, 1987.
[34] Sun S W, Gao X Y, Lu Z G. Effects of different nitrogen fertilization levels on quality of tomato cultivated in solar greenhouse. Northern Horticulture, 2011; 11: 36–37. (in Chinese)
[35] Cseresnyés I, Rajkai K, Vozáry E.. Role of phase angle measurement in electrical impedance spectroscopy. Int. Agrophys, 2013; 27(4): 377–383.
[36] McAdams E T, Jossinet J. Problems in equivalent circuit modelling of the electrical properties of biological tissues. Bioelectrochemistry & Bioenergetics, 1996; 40(2): 147–152.
[37] Zhang M I N, Willison J H M. Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot., 1991; 42(244): 1465–1475.
[2] Azzarello E, Masi E, Mancuso S. Electrochemical impedance spectroscopy: in plant electrophysiology. Germany: Heidelberg. 2012; pp. 205–223.
[3] Khaled D El, Castellano N N, Gazquez J A, García Salvador R M, Manzano-Agugliaro F. Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 2015; 140: 1749–1762.
[4] Tomkiewicz D, Piskier T. A plant based sensing method for nutrition stress monitoring. Precis. Agric, 2012; 13(3): 370–383.
[5] Liu Y, Wang T, Wu H Y. Diagnosis on potassium nutrition of maize using impedance parameter of leaf Tissue Juice. Transactions of the CSAM, 2013; 44(1): 185–189. (in Chinese)
[6] Muñoz-Huerta R F, Ortiz-Melendez A D J, Guevara- Gonzalez R G, Torres-Pacheco I, Herrera-Ruiz G, Contreras-Medina L M, et al. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa). Sensors, 2014; 14: 11492–11503.
[7] Borges E, Matos A P, Cardoso J M. Early detection and monitoring of plant disease by bioelectric impedance spectroscopy. 2nd IEEE Portuguese Meeting, Bioengineering, 2012.
[8] Chowdhury A, Bera T K, Ghoshal D, Chakraborty B. Electrical impedance variations in banana ripening: an analytical study with electrical impedance spectroscopy. Journal of Food Process Engineering, 2017; 40(2): 1–14.
[9] Rehman M, Basem A J A, Izneid A, Abdullah M Z, Arshad M R. Assessment of quality of fruits using impedance spectroscopy. International Journal of Food Science and Technology, 2011; 46(6): 1303–1309.
[10] Freeborn T J, Maundy B, Elwakil A S. Cole impedance extractions from the step response of a current excited fruit sample. Computer and Electronics in Agriculture, 2013; 98: 100–108.
[11] Zhao P F, Zhang H L, Zhao D J, Wang Z J, Fan L F. Rapid on-line non-destructive detection of the moisture content of corn ear by bioelectrical impedance spectroscopy. Int J Agric & Biol Eng, 2015; 8(6): 37–45.
[12] Hamed K B, Zorrig W, Ahmed H H. Electrical impedance spectroscopy: A tool to investigate the responses of one halophyte to different growth and stress conditions. Computers and Electronics in Agriculture, 2016; 123: 376–383.
[13] Harry O L, Thierry B. Analysis of root growth by impedance spectroscopy (EIS). Plant and Soil, 2005; 277: 299–313.
[14] Ellis T, Murray W, Kavalieris L. Electrical capacitance of bean (Vicia faba) root systems was related to tissue density- a test for the Dalton Model. Plant Soil, 2013; 366: 575–584.
[15] Lu Y Z, Hu Y G, Zhang X L, Li P P. Responses of electrical properties of tea leaves to low-temperature stress. Int J Agric & Biol Eng, 2015; 8(5): 170–175.
[16] Zhang B H, Wang R H, Wang Y X, Li Y B. LabVIEW-based impedance biosensing system for detection of avian influenza virus. Int J Agric & Biol Eng, 2016; 9(4): 116–122.
[17] Swisher S L, Lin M C, Liao A, Leeflang E J, Khan Y. Impedance sensing device enables early detection of pressure ulcers in vivo. Nature Communications, 2015; 6: 65–75.
[18] Greenham C G, Randall P J, Müller W J. Studies of phosphorus and potassium deficiencies in Trifolium subterraneum based on electrical measurements. Can. J. Bot., 2011; 60(5): 634–644.
[19] Xiao J Z, Ren F L, Re S L T. Absorption rule of tomato on NPK and effect of fertilizer application. Xinjiang Agricultural Sciences, 1990; 3: 114–116. (in Chinese)
[20] Yu W G, Zhao T M. Tomato cultivation new technology. Fujian Science and Technology Press, 2005. (in Chinese)
[21] Bao S D. Soil agro-chemistrical analysis. China Agriculture Press, 2007. (in Chinese)
[22] Zoltowski P. On the electrical capacitance of interfaces exhibiting constantphase element behavior. Journal of Electroanalytical Chemistry, 1998; 443(1): 149–154.
[23] Larfaillou S, Guy-Bouyssou D, Cras F L, Franger S. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy. Journal of Power Sources, 2016; 319: 139–146.
[24] Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2 Capacitance. Electrochimica Acta, 2016; 188: 566–573.
[25] Córdoba-Torres P. Relationship between constant-phase element (CPE) parameters and physical properties of films with a distributed resistivity. Electrochimica Acta, 2017; 225: 592–604.
[26] Yasumasa A, Koichi M, Naoto W. Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 2014; 121(1): 24–31.
[27] Li J Y, Li M Q, Mao H P, Zhu W J. Diagnosis of potassium nutrition level in Solanum lycopersicum based on electrical impedance. Biosystems Engineering, 2016; 147: 130–138.
[28] Mizukami Y, Sawai Y, Yamaguchi Y. Moisture content measurement of tea leaves by electrical impedance and capacitance. Biosystems Engineering, 2006; 93(3): 293–299.
[29] Li J Y, Mao H P. Monitoring of tomato leaf moisture content based on electrical impedance and capacitance. Transactions of the CSAM, 2016; 47(5): 293–298. (in Chinese)
[30] Takashima T, Hikosaka K, Hirose T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 2004; 27(8): 1047–1054.
[31] Shi Z M, Tang J C, Cheng R M, Luo D, Liu S R. A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 2015; 35(18): 5909–5919. (in Chinese)
[32] Masot R, Alcañiz M, Fuentes A, Schmidt F C, Barat J M, Gil L, et al. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A, 2010; 158(2): 217–223.
[33] Bezanilla F. White M M. Membrane transport processes in organized systems. Chapter I: Properties of ionic channels in excitable membranes. Plenum Medical Book Company, New York, US, 1987.
[34] Sun S W, Gao X Y, Lu Z G. Effects of different nitrogen fertilization levels on quality of tomato cultivated in solar greenhouse. Northern Horticulture, 2011; 11: 36–37. (in Chinese)
[35] Cseresnyés I, Rajkai K, Vozáry E.. Role of phase angle measurement in electrical impedance spectroscopy. Int. Agrophys, 2013; 27(4): 377–383.
[36] McAdams E T, Jossinet J. Problems in equivalent circuit modelling of the electrical properties of biological tissues. Bioelectrochemistry & Bioenergetics, 1996; 40(2): 147–152.
[37] Zhang M I N, Willison J H M. Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot., 1991; 42(244): 1465–1475.
Downloads
Published
2017-05-31
How to Cite
Meiqing, L., Jinyang, L., Xinhua, W., & Wenjing, Z. (2017). Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy. International Journal of Agricultural and Biological Engineering, 10(3), 194–205. Retrieved from https://ijabe.migration.pkpps03.publicknowledgeproject.org/index.php/ijabe/article/view/3188
Issue
Section
Biosystems, Biological and Ecological Engineering
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).