Catalytic fast pyrolysis of corn stover in a fluidized bed heated by hot flue gas: Physicochemical properties of bio-oil and its application

Authors

  • Yang Wen College of Engineering, Shenyang Agriculture University, Shenyang 110866,China
  • Fu Peng 1. School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 2. Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China
  • Yi Weiming 1. School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 2. Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China

Keywords:

corn stover, pyrolysis, bio-oil, fluidized bed, hot flue gas, GC/MS

Abstract

Fast pyrolysis of corn stover was performed at temperatures in the range of 450°C-525°C in a fluidized bed. The chemical composition of the bio-oil acquired was analyzed by GC/MS, and its pH, kinetic viscosity and calorific values were determined. In the pyrolysis system used in this experiment, some improvements to former pyrolysis systems were done. Two screw feeders were used to prevent jamming the feeding system, and the condenser was equipped with some nozzles and a heat exchanger to cool quickly the cleaned hot gas into bio-oil. The results showed that the bio-oil yield increased with increasing pyrolysis temperature and then declined with a further increase in pyrolysis temperature. The highest bio-oil yield of 43.3 wt.% was obtained at 500°C with the dolomite as bed material. The char yield always decreased with the increase of temperature. The major chemical compounds of bio-oil included acetol, butanone, acetic acid, propionic acid, ethylene glycol, phenol, etc. Pyrolysis oil was completely immiscible in diesel, but homogeneous emulsions were obtained when mixing the pyrolysis oil, emulsifier with diesel in different ratios. Keywords: corn stover, pyrolysis, bio-oil, fluidized bed, hot flue gas, GC/MS DOI: 10.25165/j.ijabe.20171005.2473 Citation: Yang W, Fu P, Yi W M. Catalytic fast pyrolysis of corn stover in a fluidized bed heated by hot flue gas: Physicochemical properties of bio-oil and its application. Int J Agric & Biol Eng, 2017; 10(5): 226–233.

Author Biographies

Yang Wen, College of Engineering, Shenyang Agriculture University, Shenyang 110866,China

PhD candidate.College of Engineering, Shenyang Agriculture University

Fu Peng, 1. School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 2. Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China

Fu Peng is a Associate Professor at Shandong University of Technology. His research interests are in the areas of thermal engineering, power engineering and biomass energy.His published works appear in International Journal of Hydrogen Energy, Bioresource Technology, Energy Fuels, Journal of Analytical and Applied Pyrolysis, Journal of Engineering Thermophysics, Acta Energiae Solaris Sinica, Proceedings of the CSEE and Chinese Journal of Chemical Engineering.

Yi Weiming, 1. School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 2. Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong 255049, China

Yi Weiming is a Ph.D at Shandong University of Technology, dean of School of Agricultural and Food Engineering, Director of Research of biomass pyrolytic liquefaction regulation and rules in Natural Science Foundation of China and project director of National High-tech R&D Program (863 Plan) . Dr. Yi Weiming's research interests are in the areas of biomass energy. His published works appear in Bioresource Technology, Energy Conversion and Management, Journal of solar energy, International Journal of Hydrogen Energy, Journal of agricultural machinery and Renewable Energy Resources and so on.

References

[1] Ma L, Wang T, Liu Q, Zhang X, Ma W, Zhang Q. A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol Adv., 2012; 30(4): 859–873.
[2] Nakamura S, Kitano S, Yoshikawa K. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Applied Energy, 2016; 170: 186–192.
[3] Collard F X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 2014; 38: 594–608.
[4] Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 2016; 57: 1126–1140.
[5] Bai X F, Zhou X Q, Li Z F, Ni J W, Bai X. Properties and applications of biochars derived from different biomass feedstock sources. Int J Agric & Biol Eng, 2017; 10(2): 242–250.
[6] Yanik J, Kornmayer C, Saglam M, Yüksel M. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products. Fuel Processing Technology, 2007; 88(10): 942–947.
[7] Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 2012; 38: 68–94.
[8] Yang S, Ding W, Chen H. Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor. Biomass and Bioenergy, 2009; 33(2): 332–336.
[9] Zhao X, Luo D. Driving force of rising renewable energy in China: Environment, regulation and employment. Renewable and Sustainable Energy Reviews, 2017; 68: 48–56.
[10] Putun A E, Apaydin E, Putun E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy, 2004; 29(12-15): 2171–2180.
[11] Zhu X F. The principle and technology of pyrolysis of biomass. The University of Science and Technology of China Press, 2006. (in Chinese)
[12] Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 2014; 128: 162–169.
[13] Pattiya A, Suttibak S. Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. Journal of Analytical and Applied Pyrolysis, 2012; 95: 227–235.
[14] Koo W M, Jung S H, Kim J S. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor. Energy, 2014; 68: 555–261.
[15] Yang S I, Wu M S, Wu C Y. Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products. Energy, 2014; 66: 162–171.
[16] Ngo T A, Kim J, Kim S S. Fast pyrolysis of palm kernel cake using a fluidized bed reactor: Design of experiment and characteristics of bio-oil. Journal of Industrial and Engineering Chemistry, 2013; 19(1): 137–143.
[17] Pattiya A, Sukkasi S, Goodwin V. Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy, 2012; 44(1): 1067–1077.
[18] Wang S Q, Xu M L, Wang F, Li Z H. Preparation of bio-oil by catalytic pyrolysis of corn stalks using red mud. Int J Agric & Biol Eng, 2016; 9(5): 177–183.
[19] Wang J, Zhong Z, Ding K, Zhang B, Deng A D, Min M, Chen P, Ruan R. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy, 2017; 133(15): 90–98.
[20] Wang J, Zhang B, Zhong Z, Ding K, Deng A D, Min M, Chen P, Ruan R. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study. Energy Conversion and Management, 2017; 139(1): 222–231.
[21] Wei L, Xu S, Zhang L, Zhang H, Liu C, Zhu H, Liu S. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process. Technol, 2006; 87: 863–871.
[22] Xu R, Ferrante L, Briens C, Berruti F. Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. J. Anal. Appl. Pyrolysis, 2009; 86: 58–65.
[23] Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K. Research on biomass pyrolysis for liquid fuel. Biomass Bioenergy, 2004; 26: 455–462.
[24] Oasmaa A, Meier D. Analysis, characterization and test methods of fast pyrolysis liquids, in: A.V. Bridgwater (Ed.), Fast Pyrolysis of Biomass: A Handbook, vol. 2, CPL Press, Newbury, Berkshire, 2002; pp. 23–40.
[25] Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass and Bioenergy, 2004; 27(3): 265–275.
[26] Doshi V A, Vuthaluru H B, Bastow T. Investigations into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludge. Fuel Processing Technology, 2005; 86: 885– 897.
[27] Diebold J P, Czernik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels, 1997; 11(5): 1081–1091.

Downloads

Published

2017-09-30

How to Cite

Wen, Y., Peng, F., & Weiming, Y. (2017). Catalytic fast pyrolysis of corn stover in a fluidized bed heated by hot flue gas: Physicochemical properties of bio-oil and its application. International Journal of Agricultural and Biological Engineering, 10(5), 226–233. Retrieved from https://ijabe.migration.pkpps03.publicknowledgeproject.org/index.php/ijabe/article/view/2473

Issue

Section

Renewable Energy and Material Systems